Answer:
Option A,B,D
Explanation:
As radius,
$r\propto \frac{n}{z}$
$\Rightarrow \frac{\delta r}{r}=\frac{\left(\frac{n+1}{z}\right)^{2}-\left(\frac{n}{z}\right)^{2}}{\left(\frac{n}{z}\right)^{2}}$
$\frac{2n+1}{n^{2}\approx \frac{2}{n}\propto \frac{1}{n}}$
Energy $E\propto \frac{z^{2}}{n^{2}}$
$\Rightarrow \frac{\triangle E}{E}=\frac{\frac{z^{2}}{n^{2}}-\frac{z^{2}}{(n+1)^{2}}}{\frac{z^{2}}{(n+1)^{2}}}$
$=\frac{n+1^{2}-n^{2}}{n^{2}.(n+1)^{2}}.(n+1)^{2}$
$\Rightarrow \frac{\triangle E}{E}=\frac{2n+1}{n^{2}}\simeq \frac{2n}{n^{2}}\propto \frac{1}{n}$
Angular momentum $L=\frac{nh}{2\pi}$
$\Rightarrow \frac{\triangle L}{L}=\frac{\frac{(n+1)h}{2\pi}-\frac{nh}{2\pi}}{\frac{nh}{2\pi}}$
$=\frac{1}{n} \propto \frac{1}{n}$